

Technology will unlock a low carbon and affordable future, but urgent action is required

Industry and Government have agreed to deliver:

£16 bn

in joint investment between Government and industry by 2030 to reduce carbon emissions 40,000

supply chain jobs in decarbonising the UKCS and the CCUS and hydrogen sectors 50%

offshore decommissioning and new energy technology projects to be provided by local businesses

10%

sector emission reduction target by 2025, 25% by 2025 and 50% by 2030 60Mt

reduction in greenhouse gas emissions

The Call to Action

Industry and Government must act now to rapidly develop and de-risk technologies at scale

INDUSTRY TO:

Develop, test and deploy technology

GOVERNMENT TO:

Sponsor and champion test and demonstration centres

TOGETHER TO:

Ensure development of a robust infrastucture, scaling up the UK supply chain

Green hydrogen cost must drop by 60% to become the UK's primary hydrogen resource

We must leverage expertise in technology integration to reduce floating wind price by 40-50% and support green hydrogen.

INNOVATION

By rapidly trialling multiple floating designs through the deployment of test and demonstration sites.

Up to 25% reduction from anchoring and mooring design improvements

PACE

By implementing component modularity of floating offshore wind throughout construction, installation and maintenance.

NSTD offshore wind goals

Additional 30 GW by 2030

Colocation and integration between green and wind is key to delivering an affordable transition

Green hydrogen cost must drop by 60% to become the UK's primary hydrogen resource

£3.50/kg Is the upper threshold for LCOH to be commercially viable. Green hydrogen is currently £4.30/kg

High Impact Technology Opportunities

Reduce the cost of offshore wind, which contributes up to 84% of the green hydrogen cost

Improve electrolyser efficiencies using newer, more durable materials, optimised stack designs and catalytic improvements.

Develop emerging electrolyser technologies that operate more efficiently at more favourable conditions

We must leverage expertise in technology integration to reduce floating wind price by 40-50%

15% - 25% cost reductions available from anchoring and mooring design improvements

High Impact Technology Opportunities

Rapidly trial multiple floating designs through the deployment of test and demonstration sites.

DEMONSTRATE AND

Deploy projects to electrify offshore infrastructure through integration with floating wind.

INTEGRATION

Implement component modularity of floating offshore wind throughout construction, installation and maintenance.

MODULARITY

To achieve the required 50% reduction in blue hydrogen LCOH, disruption is needed

EFFICIENCY

Raise existing
Autothermal Reforming
(ATR) efficiencies through
heat recovery and new
auxiliary component
designs.
Integration with CCS

technology.

COVERAGE

By advancing disruptive technologies such as pyrolysis to provide blue hydrogen in the future in remote locations.

CCS projects must be delivered now to decarbonise industries and kickstart the hydrogen economy

COST

By testing & developing cheaper non-amine capture technology with lower energy demands

Potential 40% cost reduction in capture stage

By developing modular capture units and standardising components to reduce cost and speed up delivery.

NSTD CCS goals

- 4 CCS sites by 2030
- 20 30 MTPA CO₂ captured

CCS must be delivered now to decarbonise industries and kickstart the hydrogen economy

CCS projects must be delivered now to decarbonise industries and kickstart the hydrogen economy

£25/tCO₂ could be achieved for capture using modular solutions and new innovative technologies

High Impact Technology Opportunities

Develop modular capture units and standardise components to reduce cost and speed up delivery.

ACCELERATED INNOVATIONS Fast-track innovative capture technologies with lower energy intensities and greater efficiencies

Leverage UK expertise in digital to create advanced MMV tools and optimise operations

To achieve the required 50% reduction in blue hydrogen LCOH, imminent disruption is needed

£1.60/kg is the target LCOH needed by 2030 for blue H_2 to be cost competitive

High Impact Technology Opportunities

Raise existing Autothermal Reforming (ATR) efficiencies through heat recovery and new auxiliary component designs

EFFICIENCY

Rapidly develop pyrolysis with improved catalytic performance to be a leader in blue hydrogen.

DISRUPTIVE TECHNOLOGIES

MODULARITY

A robust midstream network is key to connect domestic and global markets

PACE

By retrofitting infrastructure with suitable materials fit for H₂ and CO₂ operating conditions

NETWORK

By expanding the footprint of pipelines, gasholders and salt caverns to enable flexibility and storage

FLEXIBILITY

By growing existing ammonia and methanol production capability to use them as hydrogen carrier, providing alternatives to pipelines.

The Future Integrated North Sea Eco-system

The road to Net Zero is complicated and requires all parts of wind, hydrogen and CCS to advance together

